Closed formulas for the price and sensitivities of European options under a double exponential jump diffusion model

نویسندگان: ثبت نشده
چکیده مقاله:

We derive closed formulas for the prices of European options andtheir sensitivities when the underlying asset follows a double-exponentialjump diffusion model, as considered by S. Kou in 2002. This author hasderived the option price by making use of double series where each termrequires the computation of a sequence of special functions, such thatthe implementation remains difficult for a large part of financial users. Ourpresent result provides an alternative to the Kou's formula easily toimplement, even for the Excel/VBA environment.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

closed formulas for the price and sensitivities of european options under a double exponential jump diffusion model

we derive closed formulas for the prices of european options andtheir sensitivities when the underlying asset follows a double-exponentialjump diffusion model, as considered by s. kou in 2002. this author hasderived the option price by making use of double series where each termrequires the computation of a sequence of special functions, such thatthe implementation remains difficult for a large...

متن کامل

Pricing Asian Options Under a Hyper-Exponential Jump Diffusion Model

We obtain a closed-form solution for the double-Laplace transform of Asian options under the hyper-exponential jump diffusion model (HEM). Similar results are only available previously in the special case of the Black-Scholes model (BSM). Even in the case of the BSM, our approach is simpler as we essentially use only Itô’s formula and do not need more advanced results such as those of Bessel pr...

متن کامل

Option Pricing Under a Double Exponential Jump Diffusion Model

Analytical tractability is one of the challenges faced by many alternative models that try to generalize the Black-Scholes option pricing model to incorporate more empirical features. The aim of this paper is to extend the analytical tractability of the BlackScholes model to alternative models with jumps. We demonstrate a double exponential jump diffusion model can lead to an analytic approxima...

متن کامل

Pricing double-barrier options under a flexible jump diffusion model

In this paper we present a Laplace transform-based analytical solution for pricing double-barrier options under a flexible hyper-exponential jump diffusion model (HEM). The major theoretical contribution is that we prove non-singularity of a related high-dimensional matrix, which guarantees the existence and uniqueness of the solution. © 2009 Elsevier B.V. All rights reserved.

متن کامل

Portfolio Optimization under Double Heston Duffie-Kan Model and the Price Calculation of the European Option

In this paper, we present a new version of the Double Heston model, where the mixed Duffie-Kan model is used to predict the volatility of the model instead of the CIR process. According to this model, we predict the stock price and calculate the European option price by using the Monte-Carlo method. Finally, by applying the proposed model, we find the optimal portfolio under the Cardinality Con...

متن کامل

The Fuzzy Jump-Diffusion Model to Pricing European Vulnerable Options

Owing to the fluctuation of financial markets from time to time, some parameters, such as the interest rate, volatility, cannot be precisely described. Under the assumption that the risk-free rate, the volatility, and the average jump intensity are fuzzy numbers, this paper presents the jump-diffusion approach to price vulnerable options in fuzzy environments. We also provide the crisp possibil...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 1  شماره 1

صفحات  1- 28

تاریخ انتشار 2011-01-20

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023